题目内容
【题目】已知函数,其中.
(1)若曲线在点处的切线方程为,求函数的解析式;
(2)讨论函数的单调性;
(3)若对于任意的,不等式在上恒成立,求的取值范围.
【答案】(1)函数的解析式为;(2)当时, 在, 内是增函数;当时在, 内是增函数,在, 内是减函数;(3).
【解析】试题(1)先求出导函数,进而根据曲线在点处的切线方程为得到即,从中可求解出的值,进而可确定函数的解析式;(2)针对导函数,对分、两类,由导数大于零求出函数的单调增区间,由导数小于零可求出函数的单调递减区间;(3)要使对于任意的,不等式在上恒成立,只须,由(2)的讨论,确定函数,进而得到不等式即,该不等式组对任意的成立,从中可求得.
(1),由导数的几何意义得,于是
由切点在直线上可得,解得
所以函数的解析式为3分
(2)因为
当时,显然,这时在, 内是增函数
当时,令,解得
当变化时, , 的变化情况如下表:
↗ | 极大值 | ↘ | ↘ | 极小值 | ↗ |
所以在, 内是增函数,在, 内是减函数.......7分
(3)由(2)知, 在上的最大值为与中的较大者,对于任意的,不等式在上恒成立,当且仅当即对任意的成立,从而得,所以满足条件的的取值范围是..................13分.
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:,.
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩服从正态分布,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为,求的数学期望.
附:若随机变量服从正态分布,则,,.
参考公式与临界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |