题目内容
【题目】图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为( )
A. B. C. D.
【答案】A
【解析】
第1代“勾股树”中,小正方形的个数3=21+1﹣1=3,所有正方形的面积之和为2=(1+1)×1,第2代“勾股树”中,小正方形的个数7=22+1﹣1,所有的正方形的面积之和为3=(2+1)×1,以此类推,第n代“勾股树”所有正方形的个数为2n+1﹣1,第n代“勾股树”所有正方形的面积的和为:(n+1)×1=n+1.
解:第1代“勾股树”中,小正方形的个数3=21+1﹣1=3,
如图(2),设直角三角形的三条边长分别为a,b,c,
根据勾股定理得a2+b2=c2,
即正方形A的面积+正方形B的面积=正方形C的面积=1,
所有正方形的面积之和为2=(1+1)×1,
第2代“勾股树”中,小正方形的个数7=22+1﹣1,
如图(3),正方形E的面积+正方形F的面积=正方形A的面积,
正方形M的面积+正方形N的面积=正方形B的面积,
正方形E的面积+正方形F的面积+正方形M的面积+正方形N的面积=正方形A的面积+正方形B的面积=正方形C的面积=1,
所有的正方形的面积之和为3=(2+1)×1,
…
以此类推,第n代“勾股树”所有正方形的个数为2n+1﹣1,
第n代“勾股树”所有正方形的面积的和为:(n+1)×1=n+1.
故选:A.
【题目】已知椭圆: 的离心率为,且椭圆过点.过点做两条相互垂直的直线、分别与椭圆交于、、、四点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若, ,探究:直线是否过定点?若是,请求出定点坐标;若不是,请说明理由.
【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |