题目内容

如图,在三棱锥中,底面
分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的大小;
(1)见解析;(2)
本试题主要是考查了线面垂直的证明以及二面角的求解的运用。
解:(Ⅰ)∵PA⊥底面ABC,BC?面ABC∴PA⊥BC.
又∠BCA=90°,∴AC⊥BC.
∵PA与AC相交∴BC⊥平面PAC.
(Ⅱ)∵D为PB的中点,DE∥BC,∴DE="1/" 2 BC,
又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,
∴AD= AB,
∴在Rt△ABC中,∠ABC=60°,
∴BC="1/" 2 AB,
∴在Rt△ADE中,sin∠DAE="DE/" AD ="BC" /2AD =
.AD与平面PAC所成的角的余弦值为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网