题目内容
【题目】已知抛物线 的焦点为 ,其准线与 轴交于点 ,过 作斜率为 的直线 与抛物线交于 两点,弦 的中点为 的垂直平分线与 轴交于 .
(1)求 的取值范围;
(2)求证: .
【答案】
(1)由y2=-4x,可得准线x=1,
从而M(1,0).
设l的方程为y=k(x-1),联立
得k2x2-2(k2-2)x+k2=0.
∵A,B存在,∴Δ=4(k2-2)2-4k2>0,
∴-1<k<1.又k≠0,
∴k∈(-1,0)∪(0,1).
(2)设P(x3,y3),A(x1,y1),B(x2,y2),
可得x3= ,y3=k( -1)=- =- .
即直线PE的方程为y+ =- (x- ).
令y=0,x0=- -1.
∵k2∈(0,1),∴x0<-3.
【解析】(1)根据抛物线方程求出其准线方程,再联立抛物线方程和直线方程得出关于x的方程式,最终确定k的取值范围。
(2)根据已知条件求出k与x0的关系,再由k的范围确定x0的范围即可。
练习册系列答案
相关题目