题目内容
已知函数
,(1)若
图象有与
轴平行的切线,求
的取值范围;(2)若
在
时取得极值,且
时,
恒成立,求
的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111044673.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111060270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111075187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111106197.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111060270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111138226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111153337.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111169331.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111184182.gif)
⑴
⑵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111231607.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111216321.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111231607.gif)
(1)
,∵
的图象上有与
轴平行的切线,则
有实数解,即方程
有实数解,∴
,∴
。
(2)由题意知
是方程
的一根,设另一根为
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111434721.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111450142.gif)
,∴
,∴
,当
时,
,当
时,
,∴当
时,
有极大值
,又
,
,即当
时,
的最大值
,∵
时,
恒成立,∴
,解得:
或
,故
的取值范围是
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111247564.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111060270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111075187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111294336.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111309461.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111356462.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111216321.gif)
(2)由题意知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111138226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111309461.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111403204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111434721.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111450142.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111465583.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111481671.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111496532.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111543559.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111559343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111574435.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111590336.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111590284.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111060270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111621310.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111637410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111668343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111153337.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111060270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111668343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111153337.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111169331.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111808285.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111964234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111980227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111184182.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121111231607.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目