题目内容
已知数列{an}各项均为正数,Sn为其前n项和,对于
,总有
成等差数列.
(I )求数列{an}的通项an;
(II)设数列
的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212500881785.jpg)
时,
;
(III)对任意
,试比较
与
的大小
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212500818628.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212500849886.jpg)
(I )求数列{an}的通项an;
(II)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212500865697.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212500881785.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212500896662.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125009121034.jpg)
(III)对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501005876.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125010211917.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501037799.jpg)
(I)an=1+(n-1)·1="n" (n∈N*).(2)略 (3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125012081320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125012081320.png)
(I )由条件得
,递写相减得an+1-an=1,由等差数列求得通项;(II)求出两边表达式证明相等;(III)数学归纳法或不等式证明。
解:(I)由题意,得
(n∈N*).
于是
,
两式相减,得
,
即an+1+an=(an+1+an)(an+1-an),
由题,an>0,an+1+an≠0,
得an+1-an=1,即{an}为公差为1的等差数列.
又由
,得a1=1或a1=0(舍去).
∴ an=1+(n-1)·1="n" (n∈N*).……………………………………………5分
(II)证法一:由(I)知
,于是
,
于是当n≥2时,
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125013951240.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501411919.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501427877.png)
=
=n(Tn-1). ……………………………10分
法二:①当n=2时,R1=T1=
=1,2(T2-1)=2(
=1,
∴ n=2时,等式成立.
②假设n=k(k≥2)时,等式成立,即
,
当n=k+1时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501567600.png)
=
=
=
=
=
=
.
∴ 当n=k+1时,等式也成立.
综合①②知,原等式对n≥2,n∈N*均成立. …………………………10分
(III)由(I)知,
.
由分析法易知,
,
当k≥2时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501832787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501848747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501863899.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501879660.png)
,∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501926850.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125019571465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501988652.png)
.即
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501255621.png)
解:(I)由题意,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501255621.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501286694.png)
两式相减,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501317741.png)
即an+1+an=(an+1+an)(an+1-an),
由题,an>0,an+1+an≠0,
得an+1-an=1,即{an}为公差为1的等差数列.
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501333585.png)
∴ an=1+(n-1)·1="n" (n∈N*).……………………………………………5分
(II)证法一:由(I)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501349528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501364788.png)
于是当n≥2时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501380776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125013951240.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501411919.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501427877.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501489823.png)
法二:①当n=2时,R1=T1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501505366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501520478.png)
∴ n=2时,等式成立.
②假设n=k(k≥2)时,等式成立,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501551704.png)
当n=k+1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501567600.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501598623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501614605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501692913.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501739887.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501754676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501770690.png)
∴ 当n=k+1时,等式也成立.
综合①②知,原等式对n≥2,n∈N*均成立. …………………………10分
(III)由(I)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125017851008.png)
由分析法易知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501817639.png)
当k≥2时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501832787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501848747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501863899.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501879660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501895598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501926850.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125019571465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212501988652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212502019790.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232125012081320.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目