题目内容

【题目】已知函数f(x)=ex﹣1﹣ ,a∈R.
(1)若函数g(x)=(x﹣1)f(x)在(0,1)上有且只有一个极值点,求a的范围;
(2)当a≤﹣1时,证明:f(x)lnx>0对于任意x∈(0,1)∪(1,+∞)成立.

【答案】
(1)解:g(x)=(x﹣1)f(x)=(x﹣1)(ex﹣1)﹣ax,x∈(0,1),

g′(x)=xex﹣a﹣1,

由函数g(x)在(0,1)上有且只有一个极值点,等价于g′(x)=xex﹣a﹣1在(0,1)上有且仅有一个变号零点,

令H(x)=xex﹣a﹣1,x∈[0,1],

H′(x)=ex(x+1),由x∈[0,1],H′(x)>0,

H(x)在[0,1]单调递增,

∴H(0)=﹣a﹣1<0,H(1)=e﹣a﹣1>0,

解得:﹣1<a<e﹣1,

∴当﹣1<a<e﹣1时,函数g(x)在(0,1)上有且只有一个极值点


(2)证明:f(x)lnx=(ex﹣1﹣ )lnx,只需证: lnx[(x﹣1)(ex﹣1)﹣ax]≥0 在 (0,1)∪(1,+∞) 上恒成立,

由x∈(0,1)∪(1,+∞) 时, lnx>0恒成立,

∴只需证:(x﹣1)(ex﹣1)﹣ax≥0 在(0,+∞)恒成立,

设g(x)=(x﹣1)(ex﹣1)﹣ax,x∈[0,+∞),

由g(0)=0 恒成立,

∴只需证:g(x)≥0 在[0,+∞),恒成立 g′(x)=xex﹣1﹣a,

g″(x)=(x+1)ex>0恒成立,

∴g′(x)单调递增,g′(x)≥g′(0)=﹣1﹣a≥0,

∴g(x)单调递增,g(x)≥g(0)=0,

∴g(x)≥0 在[0,+∞)恒成立,

∴f(x)lnx>0对于任意x∈(0,1)∪(1,+∞)成立


【解析】(1)由题意可知:由函数g(x)在(0,1)上有且只有一个极值点,等价于g′(x)=xex﹣a﹣1在(0,1)上有且仅有一个变号零点,构造辅助函数,根据函数的单调性,即可求得a的范围;(2)由题意,利用分析法,由结论可得 (x﹣1)(ex﹣1)﹣ax≥0 在(0,+∞)恒成立,设g(x)=(x﹣1)(ex﹣1)﹣ax,x∈[0,+∞),利用导数研究函数g(x)单调性,则结论易得.
【考点精析】掌握函数的极值与导数和函数的最大(小)值与导数是解答本题的根本,需要知道求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网