题目内容
【题目】在平面直角坐标平面中,的两个顶点为,平面内两点、同时满足:①;②;③.
(1)求顶点的轨迹的方程;
(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为.
①求四边形的面积的最小值;
②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.
【答案】(1);(2)①;②.
【解析】
试题分析:(1)根据得,所以为的重心,由②知是的外心,设求得,,根据化简得;(2)①由已知得,由此可设出直线方程,联立直线的方程和椭圆的方程,利用根与系数关系、弦长公式和点到直线距离公式求得面积的表达式,利用基本不等式求得最小值为;②根据中点坐标公式得,同理可求得,利用直线方程两点式求得直线方程,并令求得,所以直线过定点.
试题解析:
(1)∵,由①知,∴为的重心,设,则,由②知是的外心,∴在轴上由③知,由,得,化简整理得:.
(2)解:恰为的右焦点,
①当直线的斜率存且不为0时,设直线的方程为,
由,
设则,
①根据焦半径公式得,
又,
所以,同理,
则,
当,即时取等号.
②根据中点坐标公式得,同理可求得,
则直线的斜率为,
∴直线的方程为,
整理化简得,
令,解得,∴直线恒过定点,
②当直线有一条直线斜率不存在时,另一条斜率一定为0,直线即为轴,过点,
综上,的最小值的,直线恒过定点.
练习册系列答案
相关题目