题目内容
【题目】一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积;
(2)求该几何体的表面积.
【答案】(1);(2).
【解析】
试题分析:(1)根据正视图是底面边长为的平行四边形,侧视图是个长为,宽为的矩形,得到该几何体是一个平行六面体,其底面是边长为的正方形,高为,即可求解体积;(2)由(1)看出的几何体,知道该平行六面体中,面,面,得到侧棱长,表示几何体的表面积,得到结果.
试题解析:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以.
(2)由三视图可知,
该平行六面体中平面,平面,
∴,侧面,均为矩形,
.
练习册系列答案
相关题目
【题目】为了参加市高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:
班级 | 高三(7)班 | 高三(17)班 | 高二(31)班 | 高二(32)班 |
人数 | 12 | 6 | 9 | 9 |
(1)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数;
(2)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.