题目内容
【题目】已知椭圆的左焦点坐标为,,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.
(1)求椭圆的方程;
(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.
【答案】(1)(2)直线过定点
【解析】
(1),再由,解方程组即可;
(2)设,,由,得,由直线MN的方程与椭圆方程联立得到根与系数的关系,代入计算即可.
(1)由题意知:,又,且
解得,,
∴椭圆方程为,
(2)当直线的斜率存在时,设其方程为,设,,
由,得.
则,(*)
由,
得,
整理可得
(*)代入得,
整理可得,
又
,
∴,
即,
∴直线过点
当直线的斜率不存在时,设直线的方程为,,,其中,
∴,
由,得,
所以
∴当直线的斜率不存在时,直线也过定点
综上所述,直线过定点.
练习册系列答案
相关题目