题目内容

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量 =(2a,1), =(2b﹣c,cosC),且
(Ⅰ)求角A的大小;
(Ⅱ)若 ,求b+c的取值范围.

【答案】解:(Ⅰ)向量 =(2a,1), =(2b﹣c,cosC),且 ;∴2acosC﹣(2b﹣c)=0,
即2acosC=2b﹣c;
由正弦定理得,2sinAcosC=2sinB﹣sinC,
即2sinAcosC=2sin(A+C)﹣sinC,
∴2sinAcosC=2sinAcosC+2cosAsinC﹣sinC,
化简得2cosAsinC=sinC,
即cosA=
又A∈(0,π),
∴A=
(Ⅱ)△ABC中,A= ,a=
设△ABC外接圆的直径为2r,
由正弦定理得2r= = =2,
∴b+c=2sinB+2sinC
=2[sin(120°﹣C)+sinC]
=4sin60°cos(60°﹣C)
=2 cos(60°﹣C);
∵﹣60°<60°﹣C<60°,
∴1≥cos(60°﹣C)>
∴2 ≥2 cos(60°﹣C)>
即b+c的取值范围是( ,2 ]
【解析】(Ⅰ)根据平面向量的坐标运算与共线定理,利用正弦定理与三角形的内角和定理,即可求出A的值;(Ⅱ)利用正弦定理求出b+c的表达式,再根据角C的取值范围,即可求出b+c的取值范围.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关题目

【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.

(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;

(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在(]n=1,2,3,4,5)时,日平均派送量为50+2n单.若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列,数学期望及方差;

②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由。

(参考数据:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

【答案】甲方案的函数关系式为: 乙方案的函数关系式为:(Ⅱ)①见解析,②见解析.

【解析】

由题意可得甲方案中派送员日薪(单位:元)与送单数的函数关系式为: 乙方案中派送员日薪(单位:元)与送单数的函数关系式为:.

①由题意求得X的分布列,据此计算可得.

②答案一:由以上的计算可知,远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.

答案二:由以上的计算结果可以看出,,所以小明应选择乙方案.

Ⅰ)甲方案中派送员日薪(单位:元)与送单数的函数关系式为:

乙方案中派送员日薪(单位:元)与送单数的函数关系式为:

①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:

单数

52

54

56

58

60

频率

0.2

0.3

0.2

0.2

0.1

所以的分布列为:

152

154

156

158

160

0.2

0.3

0.2

0.2

0.1

所以

所以的分布列为:

140

152

176

200

0.5

0.2

0.2

0.1

所以

②答案一:由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.

答案二:由以上的计算结果可以看出,,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案.

【点睛】

本题主要考查频率分布直方图,数学期望与方差的含义与实际应用等知识,意在考查学生的转化能力和计算求解能力.

型】解答
束】
20

【题目】已知椭圆C:(a>b>0)的左、右焦点分别为F1,F2,且离心率为,M为椭圆上任意一点,当∠F1MF2=90°时,△F1MF2的面积为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线AF1,AF2分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2,求证:k1·k2等于定值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网