题目内容
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;
(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在(,](n=1,2,3,4,5)时,日平均派送量为50+2n单.若将频率视为概率,回答下列问题:
①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列,数学期望及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由。
(参考数据:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
【答案】(Ⅰ)甲方案的函数关系式为: ,乙方案的函数关系式为:;(Ⅱ)①见解析,②见解析.
【解析】
(Ⅰ)由题意可得甲方案中派送员日薪(单位:元)与送单数的函数关系式为: , 乙方案中派送员日薪(单位:元)与送单数的函数关系式为:.
(Ⅱ)①由题意求得X的分布列,据此计算可得,,.
②答案一:由以上的计算可知,远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.
答案二:由以上的计算结果可以看出,,所以小明应选择乙方案.
(Ⅰ)甲方案中派送员日薪(单位:元)与送单数的函数关系式为: ,
乙方案中派送员日薪(单位:元)与送单数的函数关系式为:
(Ⅱ)①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:
单数 | 52 | 54 | 56 | 58 | 60 |
频率 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 |
所以的分布列为:
152 | 154 | 156 | 158 | 160 | |
0.2 | 0.3 | 0.2 | 0.2 | 0.1 |
所以
所以的分布列为:
140 | 152 | 176 | 200 | |
0.5 | 0.2 | 0.2 | 0.1 |
所以
②答案一:由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.
答案二:由以上的计算结果可以看出,,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案.
【点睛】
本题主要考查频率分布直方图,数学期望与方差的含义与实际应用等知识,意在考查学生的转化能力和计算求解能力.
【题型】解答题
【结束】
20
【题目】已知椭圆C:(a>b>0)的左、右焦点分别为F1,F2,且离心率为,M为椭圆上任意一点,当∠F1MF2=90°时,△F1MF2的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线AF1,AF2分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2,求证:k1·k2等于定值.
【答案】(Ⅰ)(Ⅱ)见解析
【解析】
(Ⅰ)由题意可求得,则,椭圆的方程为.
(Ⅱ)设,,
当直线的斜率不存在或直线的斜率不存在时,.
当直线、的斜率存在时,,设直线的方程为,联立直线方程与椭圆方程,结合韦达定理计算可得直线的斜率为,直线的斜率为,则.综上可得:直线与的斜率之积为定值.
(Ⅰ)设由题,
解得,则,椭圆的方程为.
(Ⅱ)设,,当直线的斜率不存在时,
设,则,直线的方程为代入,
可得 ,,则,
直线的斜率为,直线的斜率为,
,
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,设直线的方程为,
则由消去可得:,
又,则,代入上述方程可得:
,,
则 ,
设直线的方程为,同理可得 ,
直线的斜率为
直线的斜率为, .
所以,直线与的斜率之积为定值,即.
【题目】为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
车流量(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的浓度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)求关于的线性回归方程;(提示数据: )
(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中, .