题目内容
数列
中,
,
(
是常数,
),且
成公比不为
的等比数列,则
的通项公式是 .
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855001225.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855017227.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855032270.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855048189.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855064257.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855064271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855079182.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855001225.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855142293.png)
试题分析:a1=2,a2=2+c,a3=2+3c,因为a1,a2,a3成等比数列,所以(2+c)2=2(2+3c),解得c=0或c=2.当c=0时,a1=a2=a3,不符合题意舍去,故c=2.当n≥2时,由于a2-a1=c,a3-a2=2c,an-an-1=(n-1)c,所以an-a1=[1+2++(n-1)]c=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012855157271.png)
点评:掌握常见数列通项公式的求法如叠加法、叠乘法是解决此类问题的关键,解题时要注意计算能力的培养.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目