题目内容

【题目】(2x﹣3)4=a0+a1x+a2x2+a3x3+a4x4 , 求
(1)a1+a2+a3+a4
(2)(a0+a2+a42﹣(a1+a32

【答案】
(1)解:由(2x﹣3)4=a0+a1x+a2x2+a3x3+a4x4

令x=1得(2﹣3)4=a0+a1+a2+a3+a4

令x=0得(0﹣3)4=a0

所以a1+a2+a3+a4=a0+a1+a2+a3+a4﹣a0=(2﹣3)4﹣81=﹣80


(2)解:在(2x﹣3)4=a0+a1x+a2x2+a3x3+a4x4中,

令x=1得(2﹣3)4=a0+a1+a2+a3+a4.①

令x=﹣1得(﹣2﹣3)4=a0﹣a1+a2﹣a3+a4.②

所以由①②有(a0+a2+a42﹣(a1+a32

=(a0﹣a1+a2﹣a3+a4)(a0+a1+a2+a3+a4

=(﹣2﹣3)4(2﹣3)4=(2+3)4(2﹣3)4=625


【解析】(1)令x=1得(2﹣3)4=a0+a1+a2+a3+a4 , 令x=0得(0﹣3)4=a0 , 即可求出答案,(2)令x=1得(2﹣3)4=a0+a1+a2+a3+a4 . ①,令x=﹣1得(﹣2﹣3)4=a0﹣a1+a2﹣a3+a4 . ②而(a0+a2+a42﹣(a1+a32 , 代值计算即可.(a0﹣a1+a2﹣a3+a4)(a0+a1+a2+a3+a4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网