题目内容

【题目】已知函数f(x),g(x)都是R上的奇函数,且F(x)=f(x)+3g(x)+5,若F(a)=b,则F(﹣a)=(
A.﹣b+10
B.﹣b+5
C.b﹣5
D.b+5

【答案】A
【解析】解:令G(x)=F(x)﹣5=f(x)+3g(x),故G(x)是奇函数,∴F(a)﹣5+F(﹣a)﹣5=0
∵F(a)=b,
∴F(﹣a)=10﹣b.
故选:A.
【考点精析】掌握函数奇偶性的性质是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网