题目内容
【题目】已知函数, , .
(1)设函数,若在区间上单调,求实数的取值范围;
(2)求证: .
【答案】(1)的取值范围为 (2)证明见解析
【解析】试题分析:(1)求出函数的导数,问题转化为在上恒成立,求出m的范围即可;(2)设g(x)=f2(x)-f3(x)-2f1′(x)=ex-lnx-2,求出函数的导数,得到函数的单调性,求出g(x)的最小值,从而证出结论.
试题解析:(1)由题意得,所以,因为,
所以
若函数在区间上单调递增,则在上恒成立,即在上恒成立,所以
若函数在区间上单调递减,则在上恒成立,
即在上恒成立,所以
综上,实数的取值范围为.
(2)设
则,设,则,所以在上单调递增,
由, 得,存在唯一的使得,
所以在上有,在上有
所以在上单调递减,在递增.
所以,故, .
【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:
售出水量x(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(单位:元) | 165 | 142 | 148 | 125 | 150 |
(1)求y关于x的线性回归方程;
(2)预测售出8箱水的收益是多少元?
附:回归直线的斜率和截距的最小二乘法估计公式分别为: = , = ﹣ ,
参考数据:7×165+6×142+6×148+5×125+6×150=4420.
【题目】某化工厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1扯皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如表所示:
A | B | C | |
甲 | 4 | 8 | 3 |
乙 | 5 | 5 | 10 |
现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车品乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲、乙两种肥料,求出此最大利润.