题目内容
【题目】给出下列说法:
①数列,,,,…的一个通项公式是;
②当时,不等式对一切实数x都成立;
③函数是周期为的奇函数;
④两两相交且不过同一点的三条直线必在同一个平面内.
其中,正确说法序号是_________.
【答案】①②③④
【解析】
根据已知,归纳猜想数列的通项公式,可判断①;根据二次函数的图象和性质,结合已知,可判断②;利用诱导公式和二倍角公式,化简函数解析式,结合三角函数的图象和性质,可判断③;根据公理2及其推论,可判断④.
① 数列
其被开方数构成一个以为首项,为公差的等差数列,
故它的一个通项公式是,故①正确;
② 当时,,
则函数的图象开口朝下,且与轴无交点,
故不等式对一切实数都成立,故②正确;
③
该函数是周期为的奇函数,故③正确;
④ 设三条直线,,,,
由公理3推论2可知,直线可确定一个平面,
,
,
又
由公理1可知,
三条直线均在平面内,故④正确.
故答案为:①②③④.
练习册系列答案
相关题目
【题目】从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到数据的频数分布表和频率分布直方图(如图).
编 号 | 分 组 | 频 数 |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
续 表
编 号 | 分 组 | 频 数 |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合计 | 200 |
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.