题目内容
(本小题满分12分)
已知函数
。
(Ⅰ)讨论函数
的单调区间;
(Ⅱ)若
在
恒成立,求
的取值范围。
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000815951744.png)
(Ⅰ)讨论函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000815966447.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000815982752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000815997342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816013337.png)
解:(Ⅰ)当
时,
单调递减,
单调递增。
当
时,
单调递增。
(Ⅱ)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816029388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816029893.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816044998.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816060399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816091980.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816091537.png)
试题分析: (1)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008161071117.png)
(2)要证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000815982752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816138812.png)
构造函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816153842.png)
解:(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008161071117.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816029388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816029893.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816044998.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816060399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816091980.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000815982752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816138812.png)
令已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816153842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816309897.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816325905.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816341864.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816341980.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816356653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816372548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240008163871000.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816403442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816497950.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000815997342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816528771.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816138812.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000816091537.png)
点评:解决该试题的关键是能准确的利用参数的取值范围得到函数的单调性的运用,并且可知函数的最值问题,进而证明不等式的恒成立。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目