题目内容

【题目】已知函数f(x)= 图象上有且仅有四个不同的点关于直线y=e的对称点在函数g(x)=kx+2e+1的图象上,则实数k的取值范围为(
A.(1,2)
B.(﹣1,0)
C.(﹣2,﹣1)
D.(﹣6,﹣1)

【答案】C
【解析】解:∵函数f(x)= 图象上有且仅有四个不同的点关于直线y=e的对称点在函数g(x)=kx+2e+1的图象上,
而函数g(x)=kx+2e+1关于直线y=e的对称图象为y=﹣kx﹣1,
∴函数ff(x)= 图象与y=﹣kx﹣1的图象有且只有四个不同的交点,
作函数f(x)= 图象与y=﹣kx﹣1的图象如下,

易知直线y=﹣kx﹣1恒过点A(0,﹣1),
设直线AC与y=xlnx相切于点C(x,xlnx),
y′=lnx+1,
故lnx+1=
解得,x=1;
故kAC=1;
设直线AB与y=xlnx相切于点C(x,x2+4x),
y′=2x+4,
故2x+4=
解得,x=﹣1;
故kAC=﹣2+4=2;
故1<﹣k<2,
故﹣2<k<﹣1;
故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网