题目内容
【题目】已知函数f(x)= 图象上有且仅有四个不同的点关于直线y=e的对称点在函数g(x)=kx+2e+1的图象上,则实数k的取值范围为( )
A.(1,2)
B.(﹣1,0)
C.(﹣2,﹣1)
D.(﹣6,﹣1)
【答案】C
【解析】解:∵函数f(x)= 图象上有且仅有四个不同的点关于直线y=e的对称点在函数g(x)=kx+2e+1的图象上,
而函数g(x)=kx+2e+1关于直线y=e的对称图象为y=﹣kx﹣1,
∴函数ff(x)= 图象与y=﹣kx﹣1的图象有且只有四个不同的交点,
作函数f(x)= 图象与y=﹣kx﹣1的图象如下,
,
易知直线y=﹣kx﹣1恒过点A(0,﹣1),
设直线AC与y=xlnx相切于点C(x,xlnx),
y′=lnx+1,
故lnx+1= ,
解得,x=1;
故kAC=1;
设直线AB与y=xlnx相切于点C(x,x2+4x),
y′=2x+4,
故2x+4= ,
解得,x=﹣1;
故kAC=﹣2+4=2;
故1<﹣k<2,
故﹣2<k<﹣1;
故选:C.
练习册系列答案
相关题目
【题目】随着互联网的发展,移动支付又称手机支付逐渐深入人民群众的生活某学校兴趣小组为了了解移动支付在人民群众中的熟知度,对岁的人群随机抽样调查,调查的问题是你会使用移动支付吗?”其中,回答“会”的共有50个人,把这50个人按照年龄分成5组,并绘制出频率分布表部分数据模糊不清如表:
分组 | 频数 | 频率 | |
第1组 | 10 | ||
第2组 | |||
第3组 | 15 | ||
第4组 | |||
第5组 | 2 | ||
合计 | 50 |
表中处的数据分别是多少?
从第1组,第3组,第4组中用分层抽样的方法抽取6人,求每组抽取的人数.
在抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.