题目内容
【题目】已知Sn是等差数列{an}的前n项和,且a2=2,S5=15.
(1)求通项公式an;
(2)若数列{bn}满足bn=2an﹣an , 求{bn}的前n项和Tn .
【答案】
(1)解:设数列{an}的公差为d,则由已知得: ,
解得 ,
所以an=a1+(n﹣1)d=n,)
(2)解:因为
所以 ,
Tn=b1+b2+…+bn=(21﹣1)+(22﹣2)+…+(2n﹣n)=(21+22+…+2n)﹣(1+2+…+n),
【解析】(1)根据题目条件等差数列{an}中,a2=2,S5=15,可求得其首项与公差,从而可求得数列{an}的通项公式;(2)求出bn的通项公式,再根据等比数列和等差数列的求和公式即可求得Tn的值.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,