题目内容
【题目】如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明:PB∥平面ACM;
(2)证明:AD⊥平面PAC.
【答案】(1)详见解析(2)详见解析
【解析】
试题(Ⅰ)证明PB∥平面ACM,利用线面平行的判定定理,证明MO∥PB即可;(Ⅱ)证明AD⊥平面PAC,利用线面垂直的判定定理,证明AD⊥AC,AD⊥PO即可;
试题解析:(1)连接BD,MO,在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点.又M为PD的中点,所以PB∥MO.因为PB平面ACM,MO平面ACM,所以PB∥平面ACM.
(2)因为∠ADC=45°,且
AD=AC=1,
所以∠DAC=90°,即AD⊥AC.又PO⊥平面ABCD,
AD平面ABCD,所以PO⊥AD.而AC∩PO=O,所以AD⊥平面PAC.
练习册系列答案
相关题目
【题目】下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是( )
游戏1 | 游戏2 | 游戏3 |
袋中装有一个红球和一个白球 | 袋中装有2个红球和2个白球 | 袋中装有3个红球和1个白球 |
取1个球, | 取1个球,再取1个球 | 取1个球,再取1个球 |
取出的球是红球→甲胜 | 取出的两个球同色→甲胜 | 取出的两个球同色→甲胜 |
取出的球是白球→乙胜 | 取出的两个球不同色→乙胜 | 取出的两个球不同色→乙胜 |
A.游戏1B.游戏2C.游戏3D.游戏2和游戏3