ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖª$\overrightarrow{{e}_{1}}$¡¢$\overrightarrow{{e}_{2}}$¡¢$\overrightarrow{{e}_{3}}$¾ùΪµ¥Î»ÏòÁ¿£¬ÆäÖÐÈκÎÁ½¸öÏòÁ¿µÄ¼Ð½Ç¾ùΪ120¡ã£¬Ôò|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$|=£¨¡¡¡¡£©A£® | 3 | B£® | $\sqrt{3}$ | C£® | $\sqrt{2}$ | D£® | 0 |
·ÖÎö ÓÉÏòÁ¿µÄÄ£³¤¹«Ê½¼ÆËã¿ÉµÃ|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$|2£¬½ø¶ø¿ÉµÃ´ð°¸£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃ|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$|2=${\overrightarrow{{e}_{1}}}^{2}$+${\overrightarrow{{e}_{2}}}^{2}$+${\overrightarrow{{e}_{3}}}^{2}$+2$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$+2$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{3}}$+2$\overrightarrow{{e}_{2}}•\overrightarrow{{e}_{3}}$
=1+1+1+3¡Á2¡Á1¡Á1¡Á£¨-$\frac{1}{2}$£©=0£¬¡à|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$|=0
¹ÊÑ¡£ºD
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÄ£³¤µÄÇó½â£¬Éæ¼°ÏòÁ¿µÄ¼Ð½Ç£¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©ÉÏÒ»µãA¹ØÓÚÔµãµÄ¶Ô³ÆµãΪB£¬FΪÆäÓÒ½¹µã£¬ÈôAF¡ÍBF£¬Éè¡ÏBAF=$\frac{5¦Ð}{12}$£¬Ôò¸ÃÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£® | $\frac{\sqrt{3}}{3}$ | B£® | $\frac{\sqrt{6}}{3}$ | C£® | $\frac{\sqrt{2}}{2}$ | D£® | $\frac{\sqrt{3}}{2}$ |
14£®ÒÑÖªÔ²C1£º£¨x+2£©2+£¨y-3£©2=5ÓëÔ²C2ÏཻÓÚA£¨0£¬2£©£¬B£¨-1£¬1£©Á½µã£¬ÇÒËıßÐÎC1AC2BΪƽÐÐËÄÐΣ¬ÔòÔ²C2µÄ·½³ÌΪ£¨¡¡¡¡£©
A£® | £¨x-1£©2+y2=5 | B£® | £¨x-1£©2+y2=$\frac{9}{2}$ | C£® | £¨x-$\frac{1}{2}$£©2+£¨y-$\frac{1}{2}$£©2=5 | D£® | £¨x-$\frac{1}{2}$£©2+£¨y-$\frac{1}{2}$£©2=$\frac{9}{2}$ |
18£®Èôf£¨x£©=$\frac{lnx}{x}$£¬e£¼b£¼a£¬Ôò£¨¡¡¡¡£©
A£® | f£¨a£©£¾f£¨b£© | B£® | f£¨a£©=f£¨b£© | C£® | f£¨a£©£¼f£¨b£© | D£® | f£¨a£©f£¨b£©£¾1 |