题目内容
【题目】在中,角,,的对边分别为,,,已知.
(1)若,的面积为,求,的值;
(2)若,且角为钝角,求实数的取值范围.
【答案】(1),或,(2)
【解析】
先由正弦定理和三角恒等变换,同角的三角函数基本关系求出cosA、sinA的值;
(1)利用余弦定理和三角形的面积公式列出方程组,求出b、c的值;
(2)利用正弦定理和余弦定理,结合角为钝角,求出k的取值范围.
△ABC中,4acosA=ccosB+bcosC,
∴4sinAcosA=sinCcosB+sinBcosC=sin(C+B)=sinA,
∴cosA,
∴sinA;
(1)a=4,
∴a2=b2+c2﹣2bccosA=b2+c2bc=16①;
又△ABC的面积为:
S△ABCbcsinAbc,
∴bc=8②;
由①②组成方程组,解得b=4,c=2或b=2,c=4;
(2)当sinB=ksinC(k>0),b=kc,
∴a2=b2+c2﹣2bccosA=(kc)2+c2﹣2kcc(k2k+1)c2;
又C为钝角,则a2+b2<c2,
即(k2k+1)+k2<1,解得0<k;
所以k的取值范围是.
【题目】某种零件的质量指标值为整数,指标值为8时称为合格品,指标值为7或者9时称为准合格品,指标值为6或10时称为废品,某单位拥有一台制造该零件的机器,为了了解机器性能,随机抽取了该机器制造的100个零件,不同的质量指标值对应的零件个数如下表所示;
质量指标值 | 6 | 7 | 8 | 9 | 10 |
零件个数 | 6 | 18 | 60 | 12 | 4 |
使用该机器制造的一个零件成本为5元,合格品可以以每个元的价格出售给批发商,准合格品与废品无法岀售.
(1)估计该机器制造零件的质量指标值的平均数;
(2)若该单位接到一张订单,需要该零件2100个,为使此次交易获利达到1400元,估计的最小值;
(3)该单位引进了一台加工设备,每个零件花费2元可以被加工一次,加工结果会等可能出现以下三种情况:①质量指标值增加1,②质量指标值不变,③质量指标值减少1.已知每个零件最多可被加工一次,且该单位计划将所有准合格品逐一加工,在(2)的条件下,估计的最小值(精确到0.01) .