题目内容
【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)证明:数列{ }是等差数列;
(Ⅱ)设bn=3n ,求数列{bn}的前n项和Sn .
【答案】证明(Ⅰ)∵nan+1=(n+1)an+n(n+1), ∴ ,
∴ ,
∴数列{ }是以1为首项,以1为公差的等差数列;
(Ⅱ)由(Ⅰ)知, ,
∴ ,
bn=3n =n3n ,
∴ 3n﹣1+n3n①
3n+n3n+1②
① ﹣②得 3n﹣n3n+1
=
=
∴
【解析】(Ⅰ)将nan+1=(n+1)an+n(n+1)的两边同除以n(n+1)得 ,由等差数列的定义得证.(Ⅱ)由(Ⅰ)求出bn=3n =n3n , 利用错位相减求出数列{bn}的前n项和Sn .
【考点精析】本题主要考查了等比关系的确定和数列的前n项和的相关知识点,需要掌握等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50 名,其中每天玩微信超过6 小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有60%的把握认为“微信控”与”性别“有关?
(2)现从调查的女性用户中按分层抽样的方法选出5 人并从选出的5 人中再随机抽取3 人赠送200 元的护肤品套装,记这3 人中“微信控”的人数为X,试求X 的分布列与数学期望. 参考公式: ,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |