题目内容

【题目】设函数f(x)=|x﹣a|+5x.
(1)当a=﹣1时,求不等式f(x)≤5x+3的解集;
(2)若x≥﹣1时有f(x)≥0,求a的取值范围.

【答案】解:(1)当a=﹣1时,|x+1|+5x≤5x+3,
故|x+1|≤3,
故﹣4≤x≤2,
故不等式f(x)≤5x+3的解集为[﹣4,2];
(2)当x≥0时,f(x)=|x﹣a|+5x≥0恒成立,
故只需使当﹣1≤x<0时,f(x)=|x﹣a|+5x≥0,
即|x﹣a|≥﹣5x,
即(x﹣a)2≥25x2
即(x﹣a﹣5x)(x﹣a+5x)≥0,
即(4x+a)(6x﹣a)≤0,
当a=0时,解4x×6x≤0得x=0,不成立;
当a>0时,解(4x+a)(6x﹣a)≤0得,
≤x≤
故只需使﹣≤﹣1,
解得,a≥4;
当a<0时,解(4x+a)(6x﹣a)≤0得,
≤x≤﹣
故只需使≤﹣1,
解得,a≤﹣6;
综上所述,a的取值范围为a≥4或a≤﹣6.
【解析】(1)当a=﹣1时,|x+1|+5x≤5x+3,从而解得;
(2)当x≥0时,f(x)=|x﹣a|+5x≥0恒成立,从而转化为故只需使当﹣1≤x<0时,f(x)=|x﹣a|+5x≥0,从而化简可得(4x+a)(6x﹣a)≤0,从而分类讨论解得.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网