题目内容

【题目】如图所示,在直角梯形BCEF中,∠CBF=BCE=90°AD分别是BFCE上的点,ADBC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BEBFCE(如图2).在折起的过程中,下列说法中正确的个数(  )

AC∥平面BEF

BCEF四点可能共面;

③若EFCF,则平面ADEF⊥平面ABCD

④平面BCE与平面BEF可能垂直

A.0B.1C.2D.3

【答案】C

【解析】

根据折叠前后线段、角的变化情况,由线面平行、面面垂直的判定定理和性质定理对各命题进行判断,即可得出答案.

,在图②中,连接交于点,取中点,连接MO,易证AOMF为平行四边形,即AC//FM,所以AC//平面BEF,故正确;

对②,如果BCEF四点共面,则由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,这样四边形ADEF为平行四边形,与已知矛盾,故②不正确;

对③,在梯形ADEF中,由平面几何知识易得EFFD,又EFCFEF平面CDF

即有CDEFCD平面ADEF,则平面ADEF平面ABCD,故③正确;

对④,在图②中,延长AFG,使得AF=FG,连接BGEG,易得平面BCE平面ABFBCEG四点共面.过FFNBGN,则FN平面BCE,若平面BCE平面BEF

则过F作直线与平面BCE垂直,其垂足在BE上,矛盾,故④错误.

故选:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网