题目内容

【题目】设函数f(x)的定义域是(0,+∞),且对任意正实数x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1时,f(x)>0.

(1)求f()的值;

(2)判断y=f(x)在(0,+∞)上的单调性并给出证明;

(3)解不等式f(2x)>f(8x-6)-1.

【答案】(1)-1 ; (2)见解析; (3){x|}.

【解析】

(1)先给x,y取值,当x=y=1时,求出 f(1)=0. 当x=2,y=时,即可求出f()的值.(2) y=f(x)在(0,+∞)上为增函数,再利用单调性的定义证明.(3) 由(1)知,f()=-1,所以f(8x-6)-1=f(8x-6)+f(),得到f(2x)>f(4x-3),再利用函数的单调性解不等式得解.

(1)对于任意x,y∈R都有f(xy)=f(x)+f(y),

∴当x=y=1时,有f(1)=f(1)+f(1),∴f(1)=0.

当x=2,y=时,有f(2×)=f(2)+f(),

即f(2)+f()=0,又f(2)=1,∴f()=-1.

(2)y=f(x)在(0,+∞)上为增函数,证明如下:

设0<x1<x2,则f(x1)+f()=f(x2),

即f(x2)-f(x1)=f().

>1,故f()>0,

即f(x2)>f(x1),故f(x)在(0,+∞)上为增函数.

(3)由(1)知,f()=-1,∴f(8x-6)-1=f(8x-6)+f()

=f( (8x-6))=f(4x-3)

∴f(2x)>f(4x-3),

∵f(x)在定义域(0,+∞)上为增函数,∴

解得解集为{x|}.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网