题目内容

:已知双曲线的左顶点、右焦点分别为A、F,点B(0,b),若,则该双曲线离心率e的值为(   )
A.       B.          C.        D.
:B

分析:通过,判断三角形ABF的关系,利用三角形的关系,得到a,b,c的关系,结合双曲线a,b,c关系求出双曲线的离心率即可.
解:因为双曲线的左顶点、右焦点分别为A、F,点B(0,b),,所以AB⊥BF,三角形ABF是直角三角形,
所以|AB|2+|BF|2=|AF|2
即:c2+b2+c2=(a+c)2
∵b2=c2-a2
∴3c2-a2=(a+c)2
∴c2-a2-ac=0,
e2-e-1=0,
解得:e=.e=(舍去).
故答案为:B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网