题目内容

在等腰梯形ABCD中,ADBCADBC,∠ABC=60°,NBC的中点,将梯形ABCDAB旋转90°,得到梯形ABCD′(如图).

(1)求证:AC⊥平面ABC′;
(2)求证:CN∥平面ADD′;
(3)求二面角A-CN-C的余弦值.
(1)见解析(2)见解析(3)-
(1)证明 ∵ADBCNBC的中点,∴ADNC,又ADBC,∴四边形ANCD是平行四边形,∴ANDC,又∠ABC=60°,∴ABBNAD
∴四边形ANCD是菱形,∴∠ACBDCB=30°,
∴∠BAC=90°,即ACAB,又平面CBA⊥平面ABC,平面CBA∩平面ABCAB,∴AC⊥平面ABC′.
(2)证明:∵ADBCAD′∥BC′,ADAD′=ABCBC′=B,∴平面ADD′∥平面BCC′,又CN?平面BCC′,∴CN∥平面ADD′.
(3)解:∵AC⊥平面ABC′,AC′⊥平面ABC.
如图建立空间直角坐标系,

AB=1,则B(1,0,0),C(0,,0),C′(0,0,),
N,∴′=(-1,0,),′=(0,-),设平面CNC的法向量为n=(xyz),则
z=1,则xy=1,∴n=(,1,1).
AC′⊥平面ABC,∴平面CAN⊥平面ABC,又BDAN,平面CAN∩平面ABCAN,∴BD⊥平面CANBDAN交于点OO则为AN的中点,O,∴平面CAN的法向量.
∴cos〈n〉=
由图形可知二面角A­CN­C为钝角,
所以二面角A­CN­C的余弦值为-
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网