题目内容
(本题满分12分)已知函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542010898.png)
(1)当
的取值范围;
(2)是否存在这样的实数
,使得函数
在区间
上为减函数,且最大值为1,若存在,求出
值;若不存在,说明理由。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542010898.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005420251500.png)
(2)是否存在这样的实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542041283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542056491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542244384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542041283.png)
(1)
;(2)这样的
不存在。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542275745.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542041283.png)
试题分析:(1)根据对数函数有意义可知,真数部分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542322597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542337539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542353467.png)
(2)假设存在这样的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542041283.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005423841462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542400894.png)
解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542431535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542322597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542337539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542353467.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542509851.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005425241111.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542540779.png)
(2)假设存在这样的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542041283.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005425711431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542400894.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542618624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542634388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542649577.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005426801128.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542696442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542712522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005427271056.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000542041283.png)
点评:解决该试题的关键是根据已知中恒有意义说明了最小值处 函数值大于零,同时根据存在a使得函数递减,则利用同增异减的思想得到a的取值情况。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目