题目内容

【题目】函数f(x)=x2+2x﹣3,x∈[﹣2,1],函数f(x)的值域为

【答案】[﹣4,0]
【解析】解:由题意:函数f(x)=x2+2x﹣3=(x+1)2﹣4.
开口向上,对称轴x=﹣1,
∵x∈[﹣2,1],
根据二次函数的图象及性质可得:
当x=﹣1时,函数f(x)取得最小值为﹣4;
当x=1时,函数f(x)取得最大值为0;
∴函数f(x)=x2+2x﹣3,x∈[﹣2,1]的值域为[﹣4,0];
所以答案是[﹣4,0].
【考点精析】关于本题考查的函数的值域,需要了解求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网