题目内容
【题目】如图,四边形,,,现将沿折起,当二面角的大小在时,直线和所成角为,则的最大值为( )
A. B. C. D.
【答案】C
【解析】
取BD中点O,连结AO,CO,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线AB与CD所成角的余弦值取值范围.
解:取BD中点O,连结AO,CO,
∵AB=BD=DA=4.BC=CD,∴CO⊥BD,AO⊥BD,且CO=2,AO,
∴∠AOC是二面角A﹣BD﹣C的平面角,
以O为原点,OC为x轴,OD为y轴,
过点O作平面BCD的垂线为z轴,建立空间直角坐标系,
B(0,﹣2,0),C(2,0,0),D(0,2,0),
设二面角A﹣BD﹣C的平面角为θ,则,
连AO、BO,则∠AOC=θ,A(),
∴,,
设AB、CD的夹角为α,
则cosα,
∵,∴cos,∴|1|∈[0,1+].
∴cos的最大值为.
故选:C.
练习册系列答案
相关题目