题目内容

【题目】设函数f(x)=(x3﹣1)2+1,下列结论中正确的是(
A.x=1是函数f(x)的极小值点,x=0是函数f(x)的极大值点
B.x=1及x=0均是函数f(x)的极大值点
C.x=1是函数f(x)的极大值点,x=0是函数f(x)的极小值点
D.x=1是函数f(x)的极小值点,函数f(x)无极大值点

【答案】D
【解析】解:∵f(x)=x6﹣2x3+2,∴f'(x)=6x5﹣6x2=6x2(x3﹣1)
令f'(x)=0,x=0或x=1
∵当x>1时,f'(x)>0,所以函数f(x)单调递增,
当x<1时,f'(x)<0,所以函数f(x)单调递减,
∴函数f(x)在x=1时取到极小值,无极大值.
故选:D.
【考点精析】关于本题考查的函数的极值与导数,需要了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网