题目内容
【题目】请用空间向量求解已知正四棱柱中,,, 分别是棱,上的点,且满足,.
求异面直线,所成角的余弦值;
求面与面所成的锐二面角的余弦值.
【答案】(1);(2).
【解析】
推导出AD,DC,两两垂直,以A为原点,DA,DC,所在的直线分别为x,y,z轴建立空间直角坐标系,利用向量法能求出异面直线,所成角的余弦值;求出平面的一个法向量和平面FAD的一个法向量,利用向量法能求出面与面FAD所成的锐二面角的余弦值.
在正四棱柱中,平面ABCD,底面ABCD是正方形,
所以AD,DC,两两垂直,
以A为原点,DA,DC,所在的直线分别为x,y,z轴建立空间直角坐标系,
又因,,E,F分别是棱,上的点,
且满足,,,
所以0,,0,,1,,1,,0,,1,,1,,
所以,
设异面直线,所成角为
所以,
所以异面直线,所成角的余弦值为
,
设平面的一个法向量为,
则,所以,令,
所以,
平面FAD的一个法向量为,
则,所以,令,所以,
所以,
所以面与面FAD所成的锐二面角的余弦值为
练习册系列答案
相关题目