ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÒÑÖªº¯Êý F (x) = e x Âú×ã F ( x) = g ( x) + h( x) £¬ÇÒ g ( x), h( x) ·Ö±ðÊǶ¨ÒåÔÚ R ÉϵÄżº¯ÊýºÍÆ溯Êý£®
£¨1£©Çóº¯Êý h(x)µÄ·´º¯Êý£»
£¨2£©ÒÑÖª(x) = g(x 1)£¬Èôº¯Êý(x)ÔÚ [1,3]ÉÏÂú×ã(2 a+1) £¬ÇóʵÊý a µÄÈ¡Öµ·¶Î§£»
£¨3£©Èô¶ÔÓÚÈÎÒâ x ¡Ê(0,2]²»µÈʽ g(2x) ah(x) ¡Ý 0 ºã³ÉÁ¢£¬ÇóʵÊý a µÄÈ¡Öµ·¶Î§£®
¡¾´ð°¸¡¿£¨1£© £¨2£© £¨3£©
¡¾½âÎö¡¿
£¨1£©ÓÉÌâÒâ¿ÉµÃ£º£¬£¬ÁªÁ¢½âµÃ£º£¬£®ÓÉ£¬»¯Îª£º£¬£¬½âµÃ£®¿ÉµÃ£®
£¨2£©£¬º¯ÊýÔÚ£¬ÉÏÂú×㣬ת»¯Îª£ºº¯ÊýÔÚ£¬ÉÏÂú×㣺£¬ÓÉÓÚº¯ÊýÔÚ£¬Éϵ¥µ÷µÝÔö£¬ÇÒº¯ÊýΪżº¯Êý£¬¿ÉµÃ£¬£¬£¬½âµÃ·¶Î§£®
£¨3£©²»µÈʽ£¬¼´£¬ÁÓÉ£¬£¬¿ÉµÃ£¬£¬²»µÈʽת»¯Îª£º£¬£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º£¬£¬
ÁªÁ¢½âµÃ£º£¬£®
ÓÉ£¬»¯Îª£º£¬£¬½âµÃ£®
£®
£¨2£©£¬º¯ÊýÔÚ£¬ÉÏÂú×㣬
ת»¯Îª£ºº¯ÊýÔÚ£¬ÉÏÂú×㣺£¬
ÓÉÓÚº¯ÊýÔÚ£¬Éϵ¥µ÷µÝÔö£¬ÇÒº¯ÊýΪżº¯Êý£¬
£¬£¬£¬½âµÃ£®
£¨3£©²»µÈʽ£¬¼´£¬
ÁÓÉ£¬£¬¿ÉµÃ£¬£¬
²»µÈʽת»¯Îª£º£¬£¬£¬µ±ÇÒ½öµ±Ê±È¡µÈºÅ£®
£®