题目内容

2.已知数列{an}满足a1=1,an=3n-1+an-1(n≥2)
(Ⅰ)求a2,a3
(Ⅱ)求数列{an}的通项公式.

分析 (Ⅰ)利用a1=1,an=3n-1+an-1(n≥2)直接计算即可;
(Ⅱ)通过对an=3n-1+an-1(n≥2)变形可知an-an-1=3n-1(n≥2),进而利用累加法计算即得结论.

解答 解:(Ⅰ)∵a1=1,an=3n-1+an-1(n≥2),
∴a2=32-1+1=4,
a3=33-1+4=13;
(Ⅱ)∵an=3n-1+an-1(n≥2),
∴an-an-1=3n-1(n≥2),
∴an-an-1=3n-1,an-1-an-2=3n-2,…,a2-a1=31
累加得:an-a1=$\frac{3(1-{3}^{n-1})}{1-3}$=$\frac{{3}^{n}}{2}$-$\frac{3}{2}$,
∴an=$\frac{{3}^{n}}{2}$-$\frac{3}{2}$+a1=$\frac{{3}^{n}}{2}$-$\frac{3}{2}$+1=$\frac{{3}^{n}-1}{2}$(n≥2),
又∵a1=1满足上式,
∴数列{an}的通项公式an=$\frac{{3}^{n}-1}{2}$.

点评 本题考查数列的通项,利用累加法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网