题目内容
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程及直线的直角坐标方程;
(2)求曲线上的点到直线的距离的最大值与最小值.
【答案】(1),(2)最大值,最小值
【解析】
(1)由曲线的参数方程,得两式平方相加求解,根据直线的极坐标方程,展开有,再根据求解.
(2)因为曲线C是一个半圆,利用数形结合,圆心到直线的距离减半径即为最小值,最大值点由图可知.
(1)因为曲线的参数方程为
所以
两式平方相加得:
因为直线的极坐标方程为.
所以
所以
即
(2)如图所示:
圆心C到直线的距离为:
所以圆上的点到直线的最小值为:
则点M(2,0)到直线的距离为最大值:
练习册系列答案
相关题目
【题目】在某校组织的一次篮球定点投篮训练中,规定每人最多投次;在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次.同学在处的命中率为0,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为
Z|X|X|K] | |||||
] |
(1)求的值;
(2)求随机变量的数学期望;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.