题目内容

【题目】设点P在曲线 上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )
A.1﹣ln2
B.
C.1+ln2
D.

【答案】B
【解析】解:∵函数 与函数y=ln(2x)互为反函数,图象关于y=x对称,
函数 上的点 到直线y=x的距离为
设g(x)= (x>0),则
≥0可得x≥ln2,
<0可得0<x<ln2,
∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,
∴当x=ln2时,函数g(x)min=1﹣ln2,

由图象关于y=x对称得:|PQ|最小值为
故选B.
由于函数 与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数 上的点 到直线y=x的距离为 的最小值,
设g(x)= ,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网