题目内容

【题目】下列四组函数,表示同一函数的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

【答案】D
【解析】解:A.f(x)=|x|,两个函数的对应法则不相同,所以A不是同一函数.B.f(x)的定义域为R,而g(x)= =x的定义域为(﹣∞,0)∪(0,+∞),所以定义域不同,所以B不是同一函数.
C.f(x)=lnx2=2lnx,x≠0,g(x)=2lnx,x>0,两个函数的定义域不相同,所以C不是同一函数.
D.f(x)=logaax(a>0,a≠1)=x,g(x)= =x,f(x)的定义域为R,而g(x)的定义域为R,两个函数的定义域和对应法则相同,所以D是同一函数.
故选D.
【考点精析】掌握判断两个函数是否为同一函数是解答本题的根本,需要知道只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网