题目内容
【题目】在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.
(1)求证:平面.
(2)求二面角的大小.
【答案】(1)见解析;(2)
【解析】
(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.
(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.
(1)证明:∵平面平面ABEG,且,
∴平面,
∴,
由题意可得,
∴,
∵,且,
∴平面.
(2)如图所示,建立空间直角坐标系,则,,,,,,.
设平面的法向量是,
则,
令,,
由(1)可知平面的法向量是,
∴,
由图可知,二面角为钝二面角,所以二面角的大小为.
练习册系列答案
相关题目