题目内容
已知椭圆![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132184324.png)
(
)的一个顶点为
,离心率为
,直线
与椭圆
交于不同的两点
、
.(1) 求椭圆
的方程;(2) 当
的面积为
时,求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132184324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132200766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132216498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132231552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132247413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132262610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132278313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132294399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132309357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132278313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132356642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132372479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132387312.png)
(1)
; (2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132403700.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132418381.png)
试题分析:(1)易知椭圆的焦点在x轴上,因为椭圆的一个顶点为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132231552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132247413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132465344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132481599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132403700.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132512989.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031325287372.png)
点A到直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132262610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132559782.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031325742108.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003132418381.png)
点评:本题主要考查椭圆方程的求法和弦长的运算,解题时要注意椭圆性质的灵活运用和弦长公式的合理运用。在求直线与圆锥曲线相交的弦长时一般采用韦达定理设而不求的方法,在求解过程中一般采取步骤为:设点→联立方程→消元→韦达定理→弦长公式。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目