题目内容
【题目】已知函数f(x)=ex﹣ax﹣1,a∈R.
(1)当a=2时,求函数f(x)的单调性;
(2)设a≤0,求证:x≥0时,f(x)≥x2.
【答案】(1)f(x)在(﹣∞,ln2)上单调递减,在(ln2,+∞)上单调递增(2)证明见解析
【解析】
(1)将代入,求函数的导函数,由函数的单调性与导数即可求解.
(2)利用分析法,将不等式转化为f(x)﹣x2=ex﹣ax﹣1﹣x2≥0恒成立,
令g(x)=ex﹣ax﹣1﹣x2,研究的单调性即可证明.
(1)解:当a=2时,f(x)=ex﹣2x﹣1;
f′(x)=ex﹣2;
当f′(x)=0时,x=ln2;
∴f(x)在(﹣∞,ln2)上单调递减,在(ln2,+∞)上单调递增;
(2)证明:令g(x)=f(x)﹣x2;
即证当x≥0时,g(x)=f(x)﹣x2=ex﹣ax﹣1﹣x2≥0恒成立;
g′(x)=ex﹣2x﹣a;
令h(x)=g′(x),则h′(x)=ex﹣2;
由第(1)问可知,h(x)min=h(ln2)=2﹣2ln2﹣a;
∵a≤0;
∴h(ln2)>0;
∴g′(x)>0,即g(x)在[0,+∞)上单调递增;
∴g(x)≥g(0)=0;
∴当x≥0时,f(x)≥x2.
练习册系列答案
相关题目