题目内容
函数
在
时取得极小值.
(1)求实数
的值;
(2)是否存在区间
,使得
在该区间上的值域为
?若存在,求出
的值;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402434737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402450383.png)
(1)求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402466283.png)
(2)是否存在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402481471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402497447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402512590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402528435.png)
(1)
.(2)满足条件的
值只有一组,且
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402544374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402622430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402653554.png)
试题分析:本题利用导数研究函数的最值与单调性等基础知识,是高考常考的题型,对于(1),根据极值定义解方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402668531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402684517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402700427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402731408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402746430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402762940.png)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402793883.png)
由题意知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402668531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402544374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402856354.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402544374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402887725.png)
易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402902429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402934454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402949485.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402856354.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402980834.png)
易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402902429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402934454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403043448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403074469.png)
所以,满足条件的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402544374.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402684517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402700427.png)
①若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402731408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403168400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403183677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403199667.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402762940.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240544032461246.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403261426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403277466.png)
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403292540.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403199667.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403324356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402746430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403370609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403402534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403417592.png)
(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403402534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240544034481386.png)
由①可知不存在满足条件的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402622430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403417592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240544034951153.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403511879.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403526934.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240544035421316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403558437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403667409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403682423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403698605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403714481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403745449.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054403760870.png)
综上所述,满足条件的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402622430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054402653554.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目