题目内容
【题目】已知过定点,且与直线:相切的动圆圆心为.
(Ⅰ)求圆心的轨迹方程;
(Ⅱ)过点作直线与轨迹交于、两点,交直线于点,中点记为,求的最小值.
【答案】(Ⅰ)(Ⅱ)16
【解析】
(Ⅰ)根据抛物线的定义可知,圆心的轨迹是以为焦点,直线:为准线的抛物线,由此可得轨迹方程;
(Ⅱ)设直线的方程为,与抛物线方程联立,利用韦达定理得到,再求得,根据平面向量的数量积公式运算后,根据基本不等式可得最小值.
(Ⅰ)由题意可知,圆心到点的距离等于它到直线:的距离,
所以圆心的轨迹是以为焦点,直线:为准线的抛物线,
所以所求轨迹的方程为:.
(Ⅱ)设直线的方程为,与抛物线方程联立消去得,
设,则,所以,
易得,
所以
(当且仅当时取得等号)
所以的最小值为16
【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。
附:参考公式: ,,其中为样本平均值。
参考数据: .
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.
(1)求图中a的值;
(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:
A试验区 | B试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;
(3)用样本估计总体,若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)