题目内容
【题目】若函数的定义域为,满足对任意,,有,则称为型函数;若函数的定义域为,满足对任意,恒成立,且对任意,,有,则称为对数型函数.
(1)当函数时,判断是否为型函数,并说明理由.
(2)当函数时,证明:是对数型函数.
(3)若函数是型函数,且满足对任意,有,问是否为对数型函数?若是,加以证明;若不是,请说明理由.
【答案】(1)不是型函数,详见解析(2)证明见解析(3)是对数型函数,证明见解析
【解析】
(1)由,作差化简,得到当,同号时,此时,即可得到结论;
(2)因为恒成立,可利用分析法和函数的新定义,作出判定和证明.
(3)由的新定义和,得到,进而得到,再根据对数的运算性质,即可求解.
(1)由题,函数,
则
当,同号时,此时,
此时不满足,所以不是型函数.
(2)因为恒成立,
要证对任意,,,
即证对任意,,,
即证对任意,,.
因为,
所以是对数型函数
(3)函数是对数型函数.证明如下:
因为是型函数,所以对任意,,有,
又由对任意,有,所以,
所以,所以,
所以,
所以是对数型函数.
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.
(1)求图中a的值;
(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:
A试验区 | B试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;
(3)用样本估计总体,若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表,经过进一步统计分析,发现y与x具有线性相关关系.
价格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(1)根据上表给出的数据,求出y与x的线性回归方程;
(2)利用(1)中的回归方程,当价格元/kg时,日需求量y的预测值为多少?
(参考公式:线性回归方程,其中,.)