题目内容

(2013•东至县一模)△ABC中,a,b,c分别是角A,B,C的对边,已知
m
=(3,2sinA),
n
=(sinA,1+cosA)
,满足
m
n
,且
7
(c-b)=a

(1)求角A的大小;
(2)求cos(C-
π
6
)
的值.
分析:(1)由题意,利用向量平行的坐标表示可得关于cosA 的方程,从而可求cosA,进而可求A
(2)由已知
7
(c-b)=a
,两边同时平方可得,b=2c,结合正弦定理可得sinC=2sinB,然后可求sinC,cosC,代入所求式子可求
解答:解(1)∵
m
n

∴3(1+cosA)=2sin2A
即2cos2A+3cosA+1=0
cosA=-
1
2
或-1(舍去)

A=
2
3
π
…(5分)
(2)∵
7
(c-b)=a

∴7(c2+b2-2bc)=a2
而a2=b2+c2+bc
∴2c2-5bc+2b2=0
c=2b或c=
1
2
b(∵c>b,舍去)
…(8分)
∴sinC=2sinB
7
(sinC-sinB)=sinA=
3
2
联立

可得sinC=
21
7
,cosC=
2
7
7
…(10分)
cos(C-
π
6
)=
3
2
cosC+
1
2
sinC=
3
21
14
…(12分)
点评:本题主要考查了向量平行的坐标表示及同角平方关系的应用,属于知识的简单应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网