题目内容
【题目】设函数.
(1)当时,求的单调区间和极值;
(2)若直线是曲线的切线,求的值.
【答案】(1)的单调递增区间为,单调递减区间为.有极大值,无极小值.(2)
【解析】
(1)先求得函数的定义域.对函数求导有,利用导数的正负求得函数的单调区间以及极值.(2)先求得函数的导数,设出切点的坐标,利用切点处的导数为,求得含有切点横坐标的表达式,并由此求得切点的横坐标,从而求得的值.
的定义域为.
(1)当时,,
所以,令,
得,因为,所以.
与在区间上的变化情况如下:
2 | |||
+ | 0 | - | |
↗ | ↘ |
所以的单调递增区间为,单调递减区间为.
有极大值,无极小值.
(2)因为,所以.
设直线与曲线的切点为,
所以,即. ①
又因为,
即,②
由①②得.
设,因为,
所以在区间上单调递增,
因为,即.
所以.
【题目】某工厂生产某种型号的农机具零配件,为了预测今年7月份该型号农机具零配件的市场需求量,以合理安排生产,工厂对本年度1月份至6月份该型号农机具零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的6组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售单价(元) | 11.1 | 9.1 | 9.4 | 10.2 | 8.8 | 11.4 |
销售量(千件) | 2.5 | 3.1 | 3 | 2.8 | 3.2 | 2.4 |
(1)根据1至6月份的数据,求关于的线性回归方程(系数精确到0.01);
(2)结合(1)中的线性回归方程,假设该型号农机具零配件的生产成本为每件3元,那么工厂如何制定7月份的销售单价,才能使该月利润达到最大?(计算结果精确到0.1)
参考公式:回归直线方程,
参考数据:,
【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高二年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 5 |
表2:女生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 |
(1)由表中统计数据填写下边列联表:
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | 总计 |
(2)试采用独立性检验进行分析,能否在犯错误的概率不超过0.1的前提下认为“测评结果优秀与性别有关”.
参考数据与公式:,其中.
临界值表:
0.1 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
【题目】某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数是总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有选择了退货.
(1)请完成下面的列联表,并判断是否有的把握认为“客户购买产品与对产品性能满意之间有关”.
对性能满意 | 对性能不满意 | 合计 | |
购买产品 | |||
不购买产品 | |||
合计 |
(2)企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金.6位客户有放回的进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |