题目内容
【题目】某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)(单位:万件)与年促销费用(单位:万元)()满足( 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2017年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2017年该产品的利润(单位:万元)表示为年促销费用(单位:万元)的函数;
(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大?
【答案】(1)(), (2)该厂家2017年的促销费用投入3万元时,厂家的利润最大为21万元
【解析】试题分析:(1)由题目中产品的年销售量x万件与年促销费用m万元的函数关系式为:,当m=0时,x=1,可得k的值,即得x关于m的解析式;又每件产品的销售价格为1.5倍的成本,可得利润y与促销费用之间的关系式;
(2)对(1)利润函数解析式进行变形,进而利用基本不等式求最大值即可.
试题解析:
(1)由题意知,当m=0时,x=1,
∴1=3﹣k,即k=2,
∴;
每件产品的销售价格为1.5×(万元),
∴利润函数y=x[1.5×]﹣(8+16x+m)
=4+8x﹣m=4+8(3﹣)﹣m
=﹣[+(m+1)]+29(m≥0).
(2)因为利润函数y=﹣[+(m+1)]+29(m≥0),
所以,当m≥0时,+(m+1)≥8,
∴y≤﹣8+29=21,当且仅当=m+1,即m=3(万元)时,ymax=21(万元).
所以,该厂家2017年的促销费用投入3万元时,厂家的利润最大,最大为21万元.
练习册系列答案
相关题目