题目内容
【题目】已知函数.
(I)讨论函数在上的单调性;
(II)设函数存在两个极值点,并记作,若,求正数的取值范围;
(III)求证:当=1时, (其中e为自然对数的底数)
【答案】(1)当时,函数在上是增函数;当时,函数在上是减函数,在上是增函数.(2)正数的取值范围是.(3)见解析
【解析】试题分析:(1)先求函数导数,,再讨论导函数在定义区间上符号变化规律:当时, ,即在上是增函数;当时,导函数有一个零点,符号先负后正,对应区间先减后增,(2)由题意易得要使函数存在两个极值点,必有,且极值点必为, ,因此,即正数的取值范围是.再化简条件,得,利用导数研究其单调性:为单调减,因此正数的取值范围是.(3)要证不等式,即证,利用导数易得函数最小值为1,而,得证.
试题解析:(Ⅰ) ,( )
当时, , ,函数在上是增函数;
当时,由,得,解得(负值舍去),,所以
当时, ,从而,函数在上是减函数;
当时, ,从而,函数在上是增函数.
综上,当时,函数在上是增函数;
当时,函数在上是减函数,在上是增函数.
(Ⅱ)由(Ⅰ)知,当时, ,函数无极值点;
要使函数存在两个极值点,必有,且极值点必为, ,又由函数定义域知, ,则有,即
,化为,所以,
所以,函数存在两个极值点时,正数的取值范围是.
由()式可知,
不等式化为,
令,所以,
令, .
当时, , ,所以,不合题意;
当时, , ,所以
在是减函数,所以,适合题意,即.
综上,若,此时正数的取值范围是.
(Ⅲ)当时, ,
不等式可化为,所以
要证不等式,即证,即证,
设,则,
在上,h'(x)<0,h(x)是减函数;
在上,h'(x)>0,h(x)是增函数.
所以,
设,则是减函数,
所以,
所以,即,
所以当时,不等式成立.
【题目】定义在R上的奇函数f(x),当x∈(﹣∞,0)时,f(x)=﹣x2+mx﹣1.
(1)当x∈(0,+∞)时,求f(x)的解析式;
(2)若方程f(x)=0有五个不相等的实数解,求实数m的取值范围.
【题目】孝感车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;
(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?
()