题目内容

已知函数f(x)=
3
(sin2x-cos2x)-2sinxcosx

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设x∈[-
π
3
, 
π
3
]
,求f(x)的值域和单调递增区间.
(Ⅰ)∵f(x)=-
3
(cos2x-sin2x)-2sinxcosx

=-
3
cos2x-sin2x
=-2sin(2x+
π
3
)

∴f(x)的最小正周期为π.
(Ⅱ)∵x∈[-
π
3
, 
π
3
]
,∴-
π
3
≤2x+
π
3
≤π

-
3
2
≤sin(2x+
π
3
)≤1
.∴f(x)的值域为[-2, 
3
]

∵当y=sin(2x+
π
3
)
递减时,f(x)递增
.∴
π
2
≤2x+
π
3
≤π
,即
π
12
≤x≤
π
3

故f(x)的递增区间为[
π
12
π
3
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网